91se在线视频,天天影视色香欲综合免费,日韩人妻高清精品专区,最近2019mv中文字幕免费看

當(dāng)前位置:中醫(yī)頻道 > 特色療法 > 熱療

發(fā)熱溫度范圍全身熱療對免疫功能的影響

發(fā)熱溫度范圍全身熱療對免疫功能的影響

(1.第二軍醫(yī)大學(xué)附屬長海醫(yī)院放療科,上海  200433;2.上海第二醫(yī)科大學(xué)附屬瑞金醫(yī)院腫瘤放化療科,上海  200025;3.解放軍第88醫(yī)院核醫(yī)學(xué)科,山東泰安  271000)

摘要:發(fā)熱溫度范圍全身熱療(FR-WBH)可提高免疫效應(yīng)細(xì)胞活性、誘導(dǎo)免疫效應(yīng)細(xì)胞再分布以及影響某些細(xì)胞因子和熱休克蛋白表達(dá),具有重要的免疫調(diào)節(jié)作用,是一種安全、有效的輔助性腫瘤治療手段。

近年來,隨著熱療的生理學(xué)和病理生理學(xué)研究逐步深入,以及更為安全的加溫設(shè)備和更為精確的測溫、控溫技術(shù)的應(yīng)用,全身熱療(Whole body hyperthermia, WBH)得到了迅速發(fā)展,已成為一種重要的輔助性腫瘤治療手段。

目前臨床常用的全身熱療方式主要有兩種:高溫短時(shí)間全身熱療(High-temperature short-duration WBH,HS-WBH),即將體中心溫度升高至41.8℃、持續(xù)1~2小時(shí),和低溫長時(shí)間全身熱療(Low-temperature long-duration WBH, LL-WBH),體中心溫度升高至39.5~40℃、持續(xù)6小時(shí)或以上。后者類似于生理狀態(tài)下機(jī)體對感染的保護(hù)性反應(yīng),故又稱為發(fā)熱溫度范圍全身熱療(Fever-range WBH, FR-WBH)。研究表明,F(xiàn)R-WBH對機(jī)體免疫功能有重要的調(diào)節(jié)作用。

1  提高免疫效應(yīng)細(xì)胞的活性

在小鼠離體和在體實(shí)驗(yàn)中均發(fā)現(xiàn),F(xiàn)R-WBH可激活蛋白激酶C(PKC)并刺激產(chǎn)生多種PKC同工酶,PKC特異性抑制劑Calphostin C可抑制此作用,提示FR-WBH可調(diào)節(jié)細(xì)胞信號(hào)傳導(dǎo)途徑中與淋巴細(xì)胞增殖和活化相關(guān)的關(guān)鍵步驟。而且加溫后淋巴細(xì)胞以血影蛋白(spectrin)為基礎(chǔ)的細(xì)胞骨架結(jié)構(gòu)亦明顯改變,細(xì)胞極性增加,偽足形狀改變,免疫活性提高[1、2]。對人臍血和成人外周血T淋巴細(xì)胞進(jìn)行體外加溫(≤40℃)后,其細(xì)胞毒活性亦提高[3]。

表皮Langerhans細(xì)胞是重要的抗原提呈細(xì)胞(APC),由其激活的T淋巴細(xì)胞介導(dǎo)的免疫反應(yīng)在機(jī)體抗腫瘤免疫中起重要作用。研究發(fā)現(xiàn),F(xiàn)R-WBH后,Langerhans細(xì)胞出現(xiàn)更多的斑點(diǎn)狀結(jié)構(gòu),樹突減少,而且向淋巴結(jié)引流增加,能更有效地提呈腫瘤抗原給效應(yīng)細(xì)胞[4]。健康志愿者接受FR-WBH后,其單核細(xì)胞表面內(nèi)毒素受體CD14和補(bǔ)體受體CD11b的表達(dá)均升高,在脂多糖刺激下釋放的腫瘤壞死因子(TNF)-α亦增加,證明FR-WBH可直接激活單核細(xì)胞,使其對內(nèi)毒素的反應(yīng)性提高[5]。

2 誘導(dǎo)免疫效應(yīng)細(xì)胞再分布

對不同品系、不同腫瘤類型荷瘤鼠的動(dòng)物實(shí)驗(yàn)表明,F(xiàn)R-WBH后,外周血、脾和腹腔中白細(xì)胞數(shù)量明顯降低,以淋巴細(xì)胞減少為主[6]。晚期實(shí)體瘤患者的FR-WBH臨床I期試驗(yàn)亦見治療后循環(huán)中T淋巴細(xì)胞和L-選擇素(+)淋巴細(xì)胞數(shù)量減少[7]。而腫瘤血管直徑明顯擴(kuò)大,腫瘤血管和腫瘤基質(zhì)內(nèi)有核細(xì)胞如類淋巴細(xì)胞、巨噬細(xì)胞、自然殺傷(NK)細(xì)胞及粒細(xì)胞等浸潤增加,表明FR-WBH可促使免疫效應(yīng)細(xì)胞向腫瘤內(nèi)轉(zhuǎn)移,其中NK細(xì)胞與腫瘤細(xì)胞的凋亡關(guān)系密切[8]。

同時(shí),F(xiàn)R-WBH可促使淋巴細(xì)胞向二級淋巴組織(如外周淋巴結(jié)、腸系膜淋巴結(jié)和Peyer’s結(jié)等)歸巢增加,這種增加是通過提高循環(huán)中淋巴細(xì)胞與腫瘤組織和淋巴組織中特殊的高內(nèi)皮細(xì)胞小靜脈(HEV)之間的依賴L-選擇素(L-selectin)及α4β7整合素(integrin)的黏附作用實(shí)現(xiàn)的,在正常組織血管的鱗狀內(nèi)皮細(xì)胞中則無此現(xiàn)象[9、10]。

進(jìn)一步的研究顯示,F(xiàn)R-WBH促進(jìn)淋巴細(xì)胞與HEV黏附是通過提高L-選擇素和α4β7整合素的活性實(shí)現(xiàn)的,并未改變其細(xì)胞表面密度,而且這種黏附作用的提高不僅在體內(nèi),而且在體外實(shí)驗(yàn)中亦能觀察到,表明加溫引起的此種效應(yīng)在局部淋巴組織微環(huán)境中即可出現(xiàn),不需要下丘腦-垂體-腎上腺軸的參與[11、12、13]。另一方面,F(xiàn)R-WBH可增強(qiáng)內(nèi)皮細(xì)胞肌動(dòng)蛋白的聚合,提高內(nèi)皮細(xì)胞分泌的能刺激α4β7整合素淋巴細(xì)胞歸巢受體的因子的活性,從而使大量淋巴細(xì)胞選擇性地轉(zhuǎn)移至感染或腫瘤部位,放大免疫效應(yīng)[14]。

3 對細(xì)胞因子表達(dá)的影響

實(shí)驗(yàn)材料不同、條件不同,F(xiàn)R-WBH對細(xì)胞因子表達(dá)的影響亦不同。離體時(shí)FR-WBH對大血管及小血管內(nèi)皮細(xì)胞黏附分子(ICAM-1, E-selectin, VCAM-1, P-selectin, PECAM-1, PNAd,  MAdCAM-1)的表達(dá)、細(xì)胞因子(IL-1β, TNF-α, IFN-γ, IL-6, IL-11, IL-12, IL-13)的釋放和趨化因子(IL-8, RANTES, MCP-1, MIP-1β, MIG)的分泌均無影響[14]。小鼠腹膜內(nèi)注射脂多糖后熱療,血清中TNF-α、IL-6、急性期蛋白(APPs)α1-酸性糖蛋白和結(jié)合珠蛋白(haptoglobin)濃度升高,而單用FR-WBH則無此影響[15]。成人臍靜脈內(nèi)皮細(xì)胞FR-WBH后PECAM-1分泌增加,24小時(shí)后E-選擇素和RANTES亦有增加,VEGF分泌則減少[16]。

4 對熱休克蛋白的影響

熱應(yīng)激可誘導(dǎo)熱休克蛋白(HSPs)和糖調(diào)蛋白(GRPs)表達(dá)上調(diào),保護(hù)細(xì)胞自身免受損傷。實(shí)驗(yàn)發(fā)現(xiàn),F(xiàn)R-WBH可提高小鼠心、腎、肺、淋巴結(jié)和胸腺組織中HSP70及肺、淋巴結(jié)和胸腺組織中HSP110的表達(dá),其中在淋巴組織中表達(dá)上調(diào)最高,可能與加溫后免疫應(yīng)答提高有關(guān)。糖調(diào)蛋白(GRP170)表達(dá)則不受影響[17、18]。

人外周血離體加溫后HSP70表達(dá)的變化與溫度和細(xì)胞類型有關(guān),加溫至39℃時(shí)即在單核細(xì)胞中有明顯誘導(dǎo),大于41℃時(shí)僅在淋巴細(xì)胞和多形核白細(xì)胞中有輕微升高。但健康志愿者FR-WBH后HSP70的表達(dá)在所有類型淋巴細(xì)胞中均有同等程度的升高,并無離體實(shí)驗(yàn)時(shí)表現(xiàn)出的不同細(xì)胞類型間的差異[19]。

5 與免疫治療的協(xié)同作用

對人成膠質(zhì)細(xì)胞的體外實(shí)驗(yàn)表明,加溫至39℃可明顯提高干擾素(IFN)的抗病毒活性及對不同腫瘤細(xì)胞的抗增殖作用,F(xiàn)R-WBH與IFN聯(lián)合應(yīng)用對于免疫力低下的晚期惡性腫瘤患者有治療價(jià)值[20]。FR-WBH可抑制VEGF產(chǎn)生,與TNF聯(lián)合應(yīng)用可增強(qiáng)其抗血管生成作用[16]。另有研究發(fā)現(xiàn),F(xiàn)R-WBH可明顯提高HSP110和HSP70作為腫瘤特異性疫苗的抗腫瘤活性[18]。FR-WBH亦能提高荷實(shí)體瘤小鼠的放射免疫治療效果。皮下移植了人結(jié)腸癌的裸鼠FR-WBH后靜脈注射放射性碘標(biāo)記的抗CEA單克隆抗體,雖未改變抗體的生物學(xué)分布,但可提高腫瘤的放射敏感性,明顯抑制腫瘤的生長[21]。

6 結(jié)論

作為一種新的腫瘤治療方法,F(xiàn)R-WBH可顯著增強(qiáng)機(jī)體免疫功能,提高放療、化療和免疫治療的效果,且安全無毒,尤其適用于免疫力低下的晚期惡性腫瘤患者。其最優(yōu)的治療方案、與其他腫瘤治療手段的最佳結(jié)合方式尚需進(jìn)一步研究。

Influence of fever-range whole body hyperthermia on immune function

CHEN Hong-lei1  JIN Ye-ning2  PENG Yong3

(1. Department of Radiation Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; 2.Deparment of Oncology, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, China; 3.Department of Nuclear Medicine, the 88th Hospital of PLA, Tai’an City, Shangdong 271000, China.)

Abstract: Fever-range whole body hyperthermia (FR-WBH) has an important immunoregulatory effect: enhance the activity of immune effector cells, induce immune effector cells redistribution, and affect the expression of some cytokines and heat shock proteins. This treatment protocol could be used as an effective and nontoxic adjuvant to other anti-tumor therapies.

With advances in physiology and pathophysiology of hyperthermia and applications of safer devices and more accurate temperature measure and control techniques, whole body hyperthermia (WBH) developed rapidly in recent years. It has became an important adjuvant anti-tumor treatment.

Two predominant WBH protocols presently being used in the clinic include a high-temperature, short-duration (HS) WBH, where core body temperature is raised to 41.8℃ for 1~2h, and a low-temperature, long-duration (LL) WBH, where core body temperature is raised to 39.5~40℃ for 6h or more. The latter protocol, comparable to the protective physiological reaction during infection, is also called fever-range (FR) WBH. Studies have revealed that FR-WBH has an important immunoregulatory effect on the host.

1 Enhance the activities of immune effector cells

FR-WBH treatment of mice, in vitro and in vivo, resulted in a activation of protein kinase C (PKC) and induced many PKC isozymes. Calphostin C, a specific inhibitor of PKC, could inhibit this action. This suggested that FR-WBH can modulate critical steps in the signal transduction pathways necessary for lymphocytes activation and proliferation. Furthermore, the spectrin-based cytoskeleton of lymphocytes also altered obviously after hyperthermia, which caused the cell polarity increased, the uropods formation changed, and the immune activity of lymphocytes enhanced[1、2]. Cytotoxic activities of T-lymphocytes from adult blood as well as from cord blood could be enhanced at febrile range (≤40℃)[3].

The Langerhans cells (LCs) of epidermis are important antigen-presenting cells (APC). The T-lymphocytes-mediated immune response initialed by LCs plays an important role in host anti-tumor immune. Studies had showed that LCs exhibited a more punctate morphology with fewer dendritic processes after FR-WBH treatment. Furthermore, the numbers of LCs drained into the lymph nodes increased, presenting the tumor antigens to effector cells more effectively[4].The expression of the monocyte endotoxin receptor CD14 and the complement receptor CD11b increased in healthy volunteers after FR-WBH. The TNF-α release stimulated by lipopolysaccharide also increased. This supported that FR-WBH can directly activate monocytes, which enhance their ability to respond to endotoxin[5].

2 Induce redistribution of immune effector cells

Various studies in animal tumor models revealed that leukocyte numbers in the peripheral blood, spleen and peritoneal cavity are significantly decreased immediately after FR-WBH treatment, reflecting the decrease in lymphocyte numbers[6].A phase I clinical trial of patients with advanced solid tumors showed that the numbers of circulating T-lymphocytes and L-selectin position lymphocytes were decreased after FR-WBH treatment[7]. However, the diameter of blood vessels within the tumor were obviously expended. The increased numbers of nucleated blood cells , such as lymphocyto-like cells, macrophages, natural killer (NK) cells and granulocytes,  were observed in the tumor vasculature and in the tumor stroma. This indicates that immunoeffector cells may have greater access to the interior of the tumor under the FR-WBH stimulation. And the tumor cell apoptosis appears to be due largely to the NK cells[8].

Meanwhile, FR-WBH stimulated lymphocytes homing to secondary lymphoid tissues, such as peripheral lymph nodes, mesenteric lymph nodes and Peyer’s patch, by increasing L-selectin and α4β7 integrin-dependent adhesive interactions between circulating lymphocytes and specialized high endothelial venules (HEV) in lymphoid tissues and tumor tissues. In contrast, FR-WBH did not augment adhesion in squamous endothelium of normal blood vessels[9、10].

Further studies revealed that FR-WBH stimulates adhesion between HEV and lymphocytes by enhancing the activities of L-selectin and α4β7 integrin rather than their cell surface density. And similar increases also occurred in vitro, indicating that the local lymphoid tissue microenvironment is sufficient for this thermic response, not requiring involvement of hypothalamus-pituitary-adrenal axis[11、12、13].On the other hand, FR-WBH augmented actin polymerization in endithelial cells and enhanced the ability of endothelial-derived factors to transactivate theα4β7 integrin lymphocyte homing receptor. Massive lymphocytes selectively migrate to the sites of infection or tumor, amplifying the immune response[14].

3 Effects on cytokines expression

Under different environments, the effects of FR-WBH on cytokines expression are also different. In vitro, fever-range hyperthermia did not affect the expression of adhesion molecules (ICAM-1, E-selectin, VCAM-1, P-selectin, PECAM-1, PNAd, MAdCAM-1), the release of cytokines (IL-1β, TNF-α, IFN-γ, IL-6, IL-11, IL-12, IL-13) and the secretion of chemokines (IL-8, RANTES, MCP-1, MIP-1β, MIG)[14].When mice received FR-WBH just after intraperitoneal administration of lipopolysaccharide, serum concentrations of TNF-α, IL-6, the acute phase proteins (APPs)α1-acid glycoprotein and heptoglobin increased. FR-WBH alone did not affect serum concentrations of these cytokines[15].FR-WBH treatment increased the PECAM-1 production in human umbilical vein endothelial cells. Increased E-selectin and RANTES levels were also observed at 24h after treatment. However, the production of VEGF decreased[16].

4 Effects on heat shock proteins

Heat stress can induce the upregulation of heat shock proteins (HSPs) or glucose regulated proteins (GRPs) expression, which help protect cells against damages. Studies showed that, FR-WBH treatment of mice did enhance HSP expression: HSP70 in heart, kidney, lung, lymph nodes and thymus; and HSP110 in lung lymph nodes and thymus. The lymphoid tissues displayed the most consistent upregulation of both HSP70 and HSP110. This may relate to the enhanced immune response during febrile temperatures. In contrast, expression of GRP170 was not affected by FR-WBH in any tissues[17、18].

Heat treatment of human peripheral blood in vitro showed that the change of HSP70 expression depends on temperature and cell type. At 39℃, a strong HSP70 induction was seen in monocytes. Up to 41℃, HSP70 increased only slightly in lymphocytes and polymorphonuclear leukocytes. However, in healthy volunteers, HSP70 expression enhanced in all kinds of lymphocytes with comparable after FR-WBH, without the cell type-specific variations as observed in vitro[19].

5 Cooperation with immunotherapy

Treatment of human fibroblast cells with fever-range hyperthermia (39℃) in vitro significantly enhanced the antiviral activity and antiproliferative activity on different tumor cells of interferon (IFN). The combination of FR-WBH and IFN may have therapeutical values to late stage cancer patients who have a weaker immune system[20].Fever-range hyperthermia decreased the production of VEGF. When combinated with TNF, the thrombotic effects on tumor neovasculature may be enhanced[16].Another study showed that fever-range hyperthermia significantly enhanced the specific vaccine efficiency of HSP110 and HSP70[18].FR-WBH also enhanced the therapeutic outcome of radio-immunotherapy for mice bearing solid cancers. After FR-WBH, nude mice bearing human colon cancer xenografts received intravenous injection of I-labelled anti-carcinoembryonic antigen (CEA) monoclonal antibody. Although hyperthermia did not alter the biodistribution of the antibody, the growth of tumor was significantly inhibited by increasing the radiosensitivity of the tumor[21].

6 Conclusion

As a new anti-tumor treatment, FR-WBH can significantly enhance the host immune function and increase the therapeutic efficacy of radiotherapy, chemotherapy and immunotherapy without toxicity, especially applying to late stage cancer patients who have a weaker immune system. Its optimal treatment protocol and the best combined modality with other anti-tumor treatments are required further research.

References:

[1] Di YP, Repasky EA, Subjeck JR. Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure[J]. J Cell Physiol, 1997, 172(1):44-54.

[2] Wang XY, Ostberg JR, Repasky EA. Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation[J]. J Immunol, 1999, 162(6):3378-3387.

[3] Shen RN, Lu L, Young P, et al. Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lectin-dependent cytotoxicity of human umbilical cord blood and adult blood cells[J]. Int J Radiat Oncol Biol Phys, 1994, 29(4):821-826.

[4] Ostberg JR, Patel R, Repasky EA. Regulation of immune activity by mild (fever-range)  whole body hyperthermia: effects on epidermal Langerhans cells[J]. Cell Stress Chaperones, 2000, 5(5):458-461.

[5] Zellner M, Hergovics N, Roth E, et al. Human monocyte stimulation by experimental whole body hyperthermia[J]. Wien Klin Wochenschr, 2002, 114(3):102-107.

[6] Ostberg JR, Repasky EA. Comparision of the effects of two different whole body hyperthermia protocols on the distribution of murine leukocyte populations[J]. Int J Hyperthermia, 2000, 16(1):29-43.

[7] Kraybill WG, Olenki T, Evans SS, et al. A phaseⅠstudy of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumors: correlation with mouse models[J]. Int J Hyperthermia, 2002, 18(3):253-266.

[8] Burd R, Dziedzic TS, Xu y, et al. Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia[J]. J Cell Physiol, 1998, 177(1):137-147.

[9] Evans SS, Wang WC, Bain MD, et al. Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules[J]. Blood, 2001, 97(9):2727-2733.

[10] Ostberg JR, Gellin C, Patel R, et al. Regulatory potential of fever-range whole body hyperthermia on Langerhans cells and lymphocytes in an antigen-dependent cellular immune response[J]. J Immunol, 2001, 167(5):2666-2670.

[11] Wang WC, Goldman LM, Schleider DM, et al. Fever-range hyperthermia enhance L-selectin-dependent adhesion of lymphocytes to vascular endothelium[J]. J Immunol, 1998, 160(2):961-969.

[12] Evans SS, Bain MD, Wang WC. Fever-range hyperthermia stimulates alpha4beta7 integrin-dependent lymphocyte-endothelial adhesion[J]. Int J Hyperthermia, 2000, 16(1):45-59.

[13] Evanss SS, Schleider DM, Bowman LA, et al. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix[J]. J Immunol, 1999, 162(6):3615-3624.

[14] Shah A, Unger E, Bain MD, et al. Cytokine and adhesion molecule expression in primary human endothelial cells stimulated with fever-range hyperthermia[J]. Int J Hyperthermia, 2002, 18(6):534-551.

[15] Ostberg JR, Taylor SL, Baumann H, et al. Regulatory effects of fever-range whole-body hyperthermia on the LPS-induced acute inflammatory response[J]. J Leukoc Biol, 2000, 68(6):815-820.

[16] Gnantf MF, Turner EM, Alexander HR. Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells[J]. Cytokine, 2000, 4(4):339-347.

[17] Ostberg JR, Kaplan KC, Repasky EA. Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia[J]. Int J Hyperthermia, 2002, 18(6):552-562.

[18] Wang XY, Kazim L, Repasky EA, et al. Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effects of fever-range hyperthermia on vaccine activity[J]. J Immunol, 2001, 166(1):490-497.

[19] Oehler R, Pusch E, Zellner M, et al. Cell type-specific varivations in the induction of hsp70 in human leukocytes by feverlike whole body hyperthermia[J]. Cell Stress Chaperones, 2001, 6(4):306-315.

[20] Payne J, Nair MP, Ambrus JL, et al. Mild hyperthermia modulates biological activities of interferons[J]. Int J Hyperthermia, 2000, 16(6):492-507.

[21] Saga T, Sakahara H, Nakamoto Y, et al. Enhancement of the therapeutic outcome of radio-immunotherapy by combination with whole-body mild hyperthermia[J]. Eur J Cancer, 2001, 37(11):1429-1434.

(中華熱療學(xué)會(huì) )

 

91se在线视频,天天影视色香欲综合免费,日韩人妻高清精品专区,最近2019mv中文字幕免费看
  • <rt id="mgkoq"><tr id="mgkoq"></tr></rt>
    <tfoot id="mgkoq"></tfoot>
  • <rt id="mgkoq"><acronym id="mgkoq"></acronym></rt><li id="mgkoq"><dl id="mgkoq"></dl></li>
  • <code id="mgkoq"><tr id="mgkoq"></tr></code>
    日本精品一区二区三区高清 | av中文字幕在线不卡| 欧美乱妇一区二区三区不卡视频| 亚洲女人小视频在线观看| 久久99久久久欧美国产| 久久―日本道色综合久久| 国产精品一区二区久激情瑜伽| 欧美成人乱码一区二区三区| 国产裸体歌舞团一区二区| 久久久www成人免费无遮挡大片| 国产自产高清不卡| 亚洲啪啪综合av一区二区三区| 欧美日韩小视频| 国产精品小仙女| 一区二区免费在线播放| 正在播放一区二区| 97久久人人超碰| 国产一区二区三区黄视频| 国产精品毛片无遮挡高清| 一本大道久久a久久综合婷婷| 亚洲人成网站精品片在线观看| 欧美精选一区二区| 美女一区二区视频| 中文字幕一区二区三区四区| 欧美精品三级在线观看| 奇米一区二区三区| 亚洲一区二区三区激情| 国产日产欧美一区| 日韩欧美一区二区在线视频| 日韩精品高清不卡| 亚洲欧美一区二区三区久本道91| 日韩一二三四区| 日本高清视频一区二区| 国产一区在线看| 日韩av电影天堂| 亚洲va天堂va国产va久| 亚洲激情图片qvod| 亚洲色图清纯唯美| 亚洲欧美另类小说| 一区二区三区四区av| 国产精品精品国产色婷婷| 国产无人区一区二区三区| 26uuu亚洲综合色| 欧美一区二区精品在线| 欧美性色综合网| 色哟哟国产精品| 色综合一个色综合亚洲| 色菇凉天天综合网| 色婷婷久久久久swag精品| 白白色亚洲国产精品| 色悠久久久久综合欧美99| 91色婷婷久久久久合中文| 一本到三区不卡视频| 欧美日韩国产一二三| 欧美不卡激情三级在线观看| 精品粉嫩超白一线天av| 亚洲天堂av一区| 麻豆成人综合网| 91丝袜美腿高跟国产极品老师| 91亚洲国产成人精品一区二区三| 日韩一区二区三区视频在线 | 久久久午夜精品| 一区二区在线观看视频| 狠狠色综合色综合网络| 色婷婷av一区二区三区大白胸 | 亚洲欧美视频一区| 成人伦理片在线| 欧美精品一区二区三区一线天视频| 国产精品久久久久一区二区三区| 视频一区欧美日韩| 欧美在线免费观看视频| 久久久久国产精品麻豆ai换脸 | 欧美激情一区二区三区不卡| 日韩精品乱码免费| 在线视频国产一区| 亚洲欧洲综合另类| 国产成a人亚洲| 欧美一区二区三区免费大片 | 欧美国产精品劲爆| 国产成人激情av| 日本一区二区三区四区| 久久av老司机精品网站导航| 91精品久久久久久久91蜜桃| 国产精品国产三级国产a| 成人午夜在线视频| ...av二区三区久久精品| 99在线精品视频| 亚洲图片欧美色图| 欧美xxxxxxxx| 不卡的av网站| 亚洲成人一区二区在线观看| 欧美性色黄大片手机版| 美女在线一区二区| 中文字幕在线一区| 51精品秘密在线观看| 免费国产亚洲视频| ●精品国产综合乱码久久久久| 欧美自拍丝袜亚洲| 国产成人精品网址| 日韩在线卡一卡二| 国产日产欧美一区二区视频| 在线成人av网站| 成人三级在线视频| 激情文学综合丁香| 一区二区三区四区视频精品免费| 欧美一区二区三区性视频| 日本亚洲视频在线| 亚洲va欧美va天堂v国产综合| 国产欧美视频在线观看| 日韩一区二区在线看片| 欧美中文字幕一区二区三区亚洲| 成人国产精品免费网站| 日韩欧美一级二级| 欧美精品一级二级| 欧美在线一区二区| 91在线你懂得| 国产伦精品一区二区三区免费| 激情文学综合丁香| 国产大片一区二区| 亚洲影视在线播放| 亚洲手机成人高清视频| 亚洲精品ww久久久久久p站| 亚洲欧美精品午睡沙发| 亚洲欧美在线高清| 亚洲欧美另类图片小说| 亚洲摸摸操操av| 亚洲女女做受ⅹxx高潮| 亚洲综合一区二区精品导航| 久久精品国产99| 不卡的av中国片| 日韩三级免费观看| 五月婷婷激情综合| 精品一区二区三区久久| 91官网在线观看| 国产精品视频你懂的| 七七婷婷婷婷精品国产| 91久久奴性调教| 亚洲视频一区二区在线观看| 依依成人精品视频| 成人免费高清在线观看| 欧美成人一区二区三区片免费| 国产日韩综合av| 亚洲精品国产第一综合99久久| 日韩一区二区免费高清| 欧美剧情片在线观看| 美女视频免费一区| 亚洲一区av在线| 欧美视频日韩视频在线观看| 一本色道久久综合亚洲91| 波多野结衣在线一区| 久久电影国产免费久久电影| 亚洲二区在线观看| 久久欧美中文字幕| 国产精品福利在线播放| **欧美大码日韩| 日韩三级在线免费观看| 欧美日韩国产一二三| 青草av.久久免费一区| 久久精品国产澳门| 经典一区二区三区| caoporn国产一区二区| 日韩一区二区三区免费看| 精品国产一区a| 亚洲第一福利视频在线| 经典一区二区三区| 欧美在线观看视频一区二区三区| 欧美亚洲另类激情小说| 久久色.com| 免费的国产精品| 色av一区二区| 久久久www免费人成精品| 日韩二区三区四区| 欧美性色黄大片| 国产日产欧美一区二区三区| 日韩av在线播放中文字幕| 在线影视一区二区三区| 欧美图区在线视频| 在线观看av一区二区| 国产精品久久午夜| 99riav一区二区三区| 精品国产3级a| 激情综合色综合久久综合| 欧美性xxxxxxxx| 日日欢夜夜爽一区| 日韩情涩欧美日韩视频| 国产成人综合网站| 日韩亚洲欧美成人一区| 麻豆精品在线视频| 成人18精品视频| 国产精品久久久久一区| 久久精品国产精品亚洲精品| 精品国产制服丝袜高跟| 国产成人精品影视| 国产亚洲欧美色| 精品亚洲欧美一区| 亚洲欧洲日韩在线| 国产999精品久久久久久绿帽| 亚洲在线观看免费| 精品精品欲导航| 伊人性伊人情综合网|